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Abstract
Soil test-based fertilizer recommendations traditionally serve to predict average nutri-

ent needs across fields, but their effectiveness for precision agriculture remains

uncertain. Our objectives were to evaluate whether soil phosphorus (P) concentra-

tions predicted corn (Zea mays,r L.) yield response to P at the sub-field level, and

to determine if soil test critical levels varied within field boundaries. We conducted

research over seven growing seasons at two Kentucky sites collecting spatially dense

yield response data from over 150 paired plots per field. Mehlich 3 extractable phos-

phorus (M3P) soil ranged from 0.8 to 63 mg kg−1, with 96% of sample points falling

below the University of Kentucky’s fertilizer cutoff of 30 mg kg−1 M3P for corn.

Each plot (10−2 ha) received 0 or 29.5 kg ha−1 P. While M3P effectively predicted

average field-level response, with yield increases in five of seven site-years, it failed to

predict subfield responses, where only 51% of plots showed positive yield response to

P application. Linear plateau models revealed that conventional statistical treatments

of soil test correlation data mask important subfield variability. The poor relationship

between soil test P and yield response at the subfield scale suggests that variable rate

P management requires incorporating additional factors beyond soil P concentration

or moving away from such deterministic models toward probabilistic models. Our

findings demonstrate that while current soil test recommendations provide accurate

field-scale guidance, they lack the precision required for variable rate application.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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1 INTRODUCTION

Current fertilizer prices and environmental concerns dictate

that we increase fertilizer use efficiency. Precision nutrient

management seeks to increase nutrient efficiency by match-

ing nutrient inputs to spatially and temporally variable crop

nutrient needs. Individual plants rely on soil nutrient supply,

as a function of amount and intensity, and external fertilizer

inputs to meet their internal nutrient requirement. Soil testing

provides the basis for conventional phosphorus (P) fertilizer

management. Soil test correlation estimates soil nutrient

supply by relating extractable soil P concentration to relative

crop response to P application. These correlation procedures

establish critical soil test concentrations or ranges, above

which we do not expect a crop response to added phosphorus.

Soil test calibration predicts the fertilizer rate needed to

deliver the balance of the plant’s nutrient need and reach the

maximum obtainable yield at a given soil P concentration

(Pearce et al., 2022).

Recent studies have shown that current soil test nutrient

recommendations are generally accurate; however, recom-

mendations need more work to improve their precision by

reflecting modern practices, higher yields, improved crop

genetics, and spatially variable growing environments (Hop-

kins & Hansen, 2019; Reed et al., 2021). Often, current

fertilizer recommendation systems in the United States rely

on correlation and calibration data generated in the mid-

20th century (Lyons et al., 2021). These studies provided

average critical soil test concentrations or ranges at state or

regional scales (median state area of 14.4 × 106 ha) (USDA-

NASS, 2024) using soil test extractants appropriate for their

regions, such as the Mehlich 3, Lancaster, Olsen, or Bray tests,

(Dari et al., 2019; Sikora & Moore, 2014) to support con-

ventional flat-rate nutrient recommendations. Our ability to

develop more spatially precise recommendations from his-

toric trial data are limited because scientists often did not

include complete plot-level data in their publications (Slaton

et al., 2022).

The spatial variability of nutrient supply complicates gen-

eration of precise nutrient recommendations. Studies have

shown that nutrient concentrations can vary across space both

vertically (Hansel et al., 2017; Howard et al., 1999; Souza,

2020) and horizontally (Solie et al., 1999). In addition, soil

properties, chemical, physical, and biological, that influence

nutrient availability, such as soil texture, density, pH and

organic matter, also vary at the field scale (Mzuku et al.,

2005). Although clear data on the prevalence of variable rate

fertilizer application do not exist, it has clearly expanded in

conventional grain production (Pierpaoli et al., 2013). A need

exists to develop nutrient recommendations that precisely and

accurately meet spatially variable crop nutrient needs.

Core Ideas
∙ Soil test phosphorus effectively predicts field-level

but not subfield-level corn yield response.

∙ Variable rate phosphorus management requires

models beyond traditional soil test correlation.

∙ High-density, paired response plots revealed spa-

tial variability in phosphorus response not captured

by current methods.

This study proposes a novel soil test correlation field study,

designed to support variable rate fertilizer applications. Our

study aimed to evaluate the effectiveness of soil test P in

predicting crop nutrient response at sub-field levels and to

examine spatial variability in soil test critical levels within

fields. We hypothesized that existing soil test P critical lev-

els for Kentucky, designed for broad-scale accuracy, would

not reliably predict P response within field boundaries due to

a lack of site-specific precision.

2 MATERIALS AND METHODS

2.1 Experimental design, crop
management, and site description

We established this study in 2016 at two sites, one located near

Princeton, KY (37.112, −87.267) in Caldwell County, and

the other near Quicksand, KY (37.535, −83.346) in Breathitt

County (Figure 1). Two grass waterways divided the Prince-

ton field into three sections (Figure 2), which totaled 4.854 ha,

and contained a Zanesville silt loam (fine-silty, mixed, active,

and mesic Oxyaquic Fragiudalfs). The Quicksand field con-

sisted of 2.55 ha (Figure 3) and contained a Chagrin–Grigsby

Complex (fine-loamy mixed, active, mesic Dystric Fluventic

Eutrudepts and coarse-loamy, mixed, active, and mesic Dys-

tric Fluventic Eutrudepts). Prior to study initiation, University

of Kentucky (UKY) managed both sites in no-till systems,

producing continuous corn (Zea mays, L.) at Quicksand, and

a corn, winter wheat (Triticum aestivum, L.), and soybean

[Glycine max, (L.), Merr.] rotation at Princeton for >10 years.

Precise fertilizer records were not available for either site

prior to 2016. In general, the Quicksand site had a history of

only urea fertilizer application without liming, and the Prince-

ton site had routine N fertilizer application, and sporadic K,

P, and lime applications. Prior to this study, UKY managed

these fields for commercial grain production, not research,

and applied nutrients uniformly across the fields.
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F I G U R E 1 Map Depicting the two sites from this study. The “PR” label and point depicts the Princeton site, and the “QS” label and point

depicts the Quicksand site. Inset shows the site of Kentucky inside the contiguous United States.

F I G U R E 2 Map Depicting main plots across the Princeton site in Princeton, KY. Plots established in 2016 were 9 × 9 m, and data were

collected in 2016, 2018, and 2020. Plots established in 2018 were 12.2 × 12.2 m, and data were collected in 2018 and 2020.

During the study (2016–2021), both fields followed a corn-

soybean crop rotation, except for wheat-double crop soybeans

at Princeton-2017 and corn after corn at Quicksand 2020–

2021 (Table 1). Researchers applied lime to the Quicksand

site in 2019 prior to soybean planting to address declining

soil pH. This manuscript only contains data collected from

the corn portions of the crop rotation.

Before trial establishment in 2016, we overlaid each field

with a 9-m grid using GIS software, and randomly selected

123 and 101 grid cells as main plots at Quicksand and Prince-

ton, respectively (Figures 2 and 3). We then divided each main

plot into three subplots, measuring 3 m by 9 m (Figure 4A).

We planted corn and soybean in rows 76 cm apart, and wheat

was drilled in rows 19 cm apart. We assigned the control treat-

ment (0 kg ha−1 P) to each edge subplot, and the P treatment

(29.5 kg ha−1 P) to the center subplot. In 2018, we added

54 and 55 main plots to the Quicksand and Princeton sites,

respectively. Due to space limitations, the main plots added

to Quicksand followed the same three-subplot scheme as the

2016 season. However, because Princeton had more free space

available, the new main plots in a 12.2 m grid included four

subplots (Figure 4B), which allowed randomization of the
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4 of 12 REED ET AL.

F I G U R E 3 Map Depicting main plots across the Quicksand site in Quicksand, KY. Each main plot was 9 × 9 m.

T A B L E 1 Cropping system employed at each site across all years.

For Princeton 2017, the winter wheat crop was planted after corn

harvest in 2016, and harvested in June 2017, followed by establishment

of soybean crop.

Year Quicksand (crop) Princeton (crop)
2016 Corn Corn

2017 Soybean Winter wheat/double crop

soybean

2018 Corn Corn

2019 Soybean Soybean

2020 Corn Corn

2021 Corn Soybean

control and P treatment with two replicates of each within the

main plot.

During corn planting, we applied liquid fertilizer in a band

approximately 5 cm beside and 5 cm below the seed (collo-

quially referred to as 2 × 2). The control treatment received

urea-ammonium nitrate (UAN, 32-0-0) at a rate of 133 L

ha−1 to provide 56 kg ha−1 N. The P treatment received 86

L ha−1 of UAN and 142 L ha−1 of ammonium polyphosphate

(APP, 10-34-0) to provide 56 kg ha−1 N and 29.5 kg ha−1

P. A group of soil fertility experts from industry, academics,

and government discussed the best way to apply fertilizer for

this trial. These conversations occurred informally and for-

mally as part of the Mule Barn meetings (Osmond et al.,

2024). The size of the fields and number of plots required

automated, mechanical fertilizer application instead of hand

application. Mechanical application dictated that we use liq-

uid fertilizer to allow precise rate changes over the shortest

distance possible. Through expert consensus, we decided that

subsurface band application offered the highest probability of

seeing a corn yield response to P under no-till management.

We planted corn and applied the starter P and N treatments

with a four-row (76.2 cm row) not-till planter (John Deere

MaxEmerge Plus 1750) outfitted with two electric variable

rate pumps (SureFire Ag Systems Tower Fertilizer System for

Field-IQ-PWM Control), one for APP and one for UAN. Tee-

Jet solenoid nozzles (TeeJet, 12 V e-ChemSaver) applied the

fertilizer behind Yetter fertilizer coulters. We achieved pre-

cise rate control using Geographic Position System (GPS)

with Real Time Kinetic (RTK) correction (Trimble, FmX Fm

1000 internal receiver), a Trimble FmX display, and a Trimble

FieldIQ controller.

We dribbled 396 L ha−1 UAN in between corn rows at V6

growth stage to provide an additional 168 kg ha−1 N, for a total

season rate of 224 kg ha−1 N. The UKY guidelines (Ritchey

& McGrath, 2021) recommend 15-98 kg ha−1 P for soils test-

ing less than or equal to the critical concentration of 30 mg

kg−1 M3P (where M3P is Mehlich 3 extractable phosphorus).

Both Princeton and Quicksand had low average M3P concen-

trations that would receive a recommendation of up to 39 kg

ha−1 P for surface broadcast P fertilizer. Therefore, we antic-

ipated that banded 29.5 kg ha−1 P would provide more than

adequate P to generate a positive yield response where M3P

was <30 mg kg−1 (Ritchey & McGrath, 2021). This exper-

imental design sought to map P response, rather than attain

maximum yield response to P or to build soil P concentrations.
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F I G U R E 4 The plot design incorporated two subplots at both sites in 2016 (A), with the center plot (B) receiving phosphorus fertilizer and the

two edge plots (A and C) receiving no phosphorus. In 2018, plots added at Quicksand used the original design (A). Plots added at the Princeton site

used a four-subplot design (B) with two subplots randomly selected as controls and the other two receiving phosphorus fertilizer.

Based on our experiences, the banded P rate would generate a

significant P response on average across soils within the range

of concentrations seen at both sites.

2.2 Soil and crop data

We used a Wintex 1000 automated soil probe (Wintex Agro)

to collect soil samples (0- to 10-cm depth, 18-mm diameter)

from each subplot prior to crop establishment in the 2016,

2018, and 2021 growing seasons at both sites. Each sam-

ple consisted of 10 individual soil cores collected randomly

throughout the subplot and thoroughly mixed to form a com-

posite sample. Soil samples were dried at 38˚C for 24 h,

ground to pass a 2-mm sieve, and submitted to the UKY

Soil Testing Laboratory (UKSTL). The UKSTL determined

soil pH (1 M KCl with glass electrode), Sikora Buffer pH,

M3P, and Mehlich 3 extractable potassium using Inductively

Coupled Plasma (ICP) methods from established soil testing

protocols (Sikora & Moore, 2014). Although we sampled each

subplot individually, this manuscript correlates the average of

the soil test results from the control plots against relativized

yield (RY). Therefore, we do not report changes in soil test

P over time in the fertilized subplots. To calculate average

pH for the control subplots, we first transformed subplot pH

values to hydrogen concentration [H+], averaged the concen-

trations, and then transformed that value to pH by taking the

inverse logarithm of the [H+].

We harvested the center two rows (total area of 13.5 m2 for

9 × 9 m main plots, 18.3 m2 for 12.2 × 12.2 m main plots)

of every four-row planter pass using a Kincaid 8-XP plot

combine (Kincaid Equipment Manufacturing) with a two-row

corn head. Yield was estimated from impulse and moisture

measurements taken by an AgLeader sensor plate and mois-

ture model (AgLeader Technology), which were then logged

to an AgLeader Insight display, along with position and speed,

determined by RTK-corrected GPS. Grain yield was adjusted

to reflect industry standard 15.5% moisture content.

We calculated RY for each main plot by dividing the con-

trol treatment (average of the subplots without P fertilizer)

by the P treatment (or average of P treatment subplots where

replicated). Publications reporting linear plateau datasets may

sometimes choose to cap relative yield values at 1.0 (Pearce

et al., 2022). Relative yield can exceed 1.0 in plots where

the control plots will yield greater than the plots with fertil-

izer application. In this study, we investigated the correlation

using both constrained and unconstrained relative yield val-

ues. The discrepancy with these values can directly impact

the models used to depict yield response. We conducted soil

test correlation by regressing the constrained or unconstrained

relative yields for each main plot against the mean M3P con-

centration of the unfertilized subplots in that main plot to

determine the critical soil test concentration above which no

further yield response was likely. Since we did not collect soil

samples in 2020, we used results from 2021 soil sampling for

the correlation procedures.
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F I G U R E 5 Density plots of Mehlich 3 extractable phosphorus (P) and soil pH of main plots (average of control treatment subplots) across both

sites and years.

Our objective was to understand the spatial variability in

nutrient response across site years. Therefore, the original

plot design allowed estimation of the yield response to P fer-

tilizer at the main plot scale. As described previously, the

original design did not replicate the P fertilized treatment

within main plots, and therefore, did not allow error estima-

tion for response at the main plot level. We determined that

a main plot was responsive to P if the relative yield value

was <0.95.

2.3 Statistical procedures

All regression and analysis of variance (ANOVA) were per-

formed using R software, Version 4.2.1 (R Core Team, 2022).

Datapoints from grain yield were determined to be outliers

and removed if they were>50% outside the interquartile range

(IQR) or 1.5 × IQR of the population from that site-year. We

conducted an ANOVA (α = 0.10) for grain yield across all

site-years using grain yield as the dependent variable, and

M3P as the independent variable, and included site-year and

main plot as random variables to determine if M3P was a pre-

dictor of yield. If there was a significant interaction, we sliced

by site-year to determine site-year-specific relationships. To

determine if M3P was a predictor of nutrient response, we

conducted a generalized linear model for binomial response

(yes or no) and regressed against M3P concentration similar

to the previous procedure.

We performed non-linear modeling with SAS software,

Version 9.4, using PROC NLIN (SAS Institute). Non-linear

analysis was conducted across both sites and by site, with

constrained and unconstrained relative yield values. Dif-

ferences between non-linear models were determined by

computing the F-statistic from the difference of the sum

of squares of the site specific and all sites, divided by the

mean square values of all sites, with an alpha value of

0.10.

3 RESULTS

3.1 Soil phosphorus and pH

For this study, we selected field sites with average M3P con-

centrations below 30 mg kg−1 (Figure 5; Table 2), the M3P

concentration below which UKY recommends P fertilizer for

corn (Ritchey & McGrath, 2021). Across all years, main plot

M3P averaged 14 and 12 mg kg−1 and ranged from 1 to
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T A B L E 2 Summary Statistics for Mehlich 3 extractable

phosphorus (M3P) and soil pH.

Mean
Standard
error Median

Median absolute
deviation

Princeton

2016

M3P (mg kg−1) 19 0.7 19 7.4

Soil pH 5.9 0.02 6.2 0.42

2018

M3P (mg kg−1) 14 0.4 12 4.5

Soil pH 5.5 0.02 5.8 0.42

2021

M3P (mg kg−1) 9 0.3 8 3.7

Soil pH 5.3 0.02 5.5 0.44

Quicksand

2016

M3P (mg kg−1) 13 0.4 11 4.5

Soil pH 4.6 0.04 4.6 0.39

2018

M3P (mg kg−1) 12 0.3 10 3.7

Soil pH 4.5 0.04 4.60 0.40

2021

M3P (mg kg−1) 12 0.3 10 4.45

Soil pH 5.2 0.03 5.40 0.56

63 mg kg−1 and 3 to 47 mg kg−1 at Princeton and Quicksand,

respectively. Approximately 94% and 98% of plots at Prince-

ton and Quicksand, respectively, had M3P below the 30 mg

kg−1 threshold. Moreover, the M3P data had a strong positive

skew, with most samples falling below 14 mg kg−1, the upper

limit of UKY’s “Low” interpretative category. Across all site

years, 96% of the plots had M3P below 30 mg kg−1, where

UKY recommends P fertilizer application.

Soil pH impacts soil P availability and potential crop

response (Penn & Camberato, 2019). The Quicksand site

had an average soil pH of 4.6, ranging from 4.0 to 7.3 in

2016 and 2018. This site was limed in the spring of 2019,

which increased the average soil pH to 5.2 (range 4.6–7.2) in

2021. The pH at Quicksand had a positive skew and a small,

consistent cluster of plots with pH around 7.0. The high pH

cluster was adjacent to a road with gravel shoulders and a

limestone (CaCO3) gravel aggregate surface at one time. We

suspect this caused the cluster of high pH plots in that area.

The pH at Princeton was less skewed than at Quicksand and

decreased over time, starting with an average value of 5.9

in 2016 and ending at 5.3 in 2021. We attribute this change

in pH to the continuous application of N during this study

(Schroder et al., 2011).

3.2 Average phosphorus response

Phosphorus fertilizer significantly impacted mean yield

across all observations; however, there was a significant inter-

action by both site and year (data not shown). Therefore,

we sliced the data by both site and year to determine site-

and year-specific trends. Phosphorus fertilizer significantly

(p < 0.0001) increased mean corn yields in 2016 at Princeton

and all years at Quicksand (Table 3). Corn yield at Princeton

was not consistently responsive to P fertilizer, with the only

significant (p = 0.0789) response coming from 2016, where

P fertilizer increased yield 0.46 ± 0.09 Mg ha−1. On aver-

age, Princeton yielded 7.11 ± 0.09 and 3.70 ± 0.07 Mg ha−1

regardless of treatment (data not shown) in 2018 and 2020,

respectively. Low yields in 2020 were due to poor crop estab-

lishment, and hot and dry summer, and the crop was never

able to fully recover. On average, P fertilizer increased Quick-

sand corn yield by 0.52 ± 0.10, 0.84 ± 0.11, 0.73 ± 0.224,

and 0.82 ± 0.16 Mg ha−1 in 2016, 2018, 2020, and 2021,

respectively. Across all years, this represents an average yield

increase of 6%.

3.3 Modeling phosphorus response

Mehlich 3 P was a significant predictor of mean yield

response across all data (p < 0.0001, Table 5). However, with

yield there was a significant interaction with site and year

(p = 0.0077); therefore, the data were sliced by site-year.

At Princeton, yield responded to P fertilizer in 44%, 31%,

and 50% of main plots in 2016, 2018, and 2020, respectively

(Table 5). The M3P was below 30 mg kg−1 in 93% of the

responsive plots yet was only a significant predictor of yield

response in 2020 (p= 0.0045). At Quicksand, yield responded

to P fertilizer in 51%, 53%, 70%, and 56% of main plots in

2016, 2018, 2020, and 2021, respectively. The concentration

of M3P was <30 mg kg−1 in 99% of the responsive plots yet

was only a significant predictor of nutrient responsiveness in

2016 (p = 0.0038).

Linear plateau models, where significant, were fitted by

site and across sites, with constrained and unconstrained rel-

ative yield values (Table 4; Figure 6). Data were not robust

enough to provide significant models by year, so all years were

compiled to provide site-specific models. At Princeton, the

linear plateau model was not significant when relative yield

was unconstrained (p = 0.3770) but was significant when

relative yield was constrained at 1.0 (p = 0.0005) with a

joint point of 16.5 mg kg−1 and a pseudo-r2 value of 0.02.

At Quicksand, the linear plateau was significant when rela-

tive yield was unconstrained (p = 0.0028) and constrained

(p < 0.0001), with a joint at 10.2 mg kg−1 and 10.0 mg

kg−1, respectively, and pseudo-r2 value of 0.02 and 0.05,

respectively. Across both sites, the linear plateau models were
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T A B L E 3 Yield and standard error (SE) for corn yield each year (Mg ha−1), the p-value of the model with phosphorus (P) fertilizer treatment

as a dependent variable, and yield as the independent variable.

P treatment Control
Mean (Mg ha−1) SE (Mg ha−1) Mean (Mg ha−1) SE (Mg ha−1) p-value
Princeton

2016 10.07 0.16 9.76 0.13 0.0789

2018 7.16 0.11 7.06 0.08 0.7280

2020 3.78 0.11 3.61 0.07 0.1850

Quicksand

2016 11.65 0.10 11.13 0.09 <0.0001

2018 15.49 0.13 14.69 0.11 <0.0001

2020 10.46 0.23 9.94 0.19 0.0001

2021 8.75 0.18 7.97 0.10 <0.0001

Note: Response was significant at α = 0.10.

T A B L E 4 Linear Plateau model parameters for unconstrained and constrained relative yield values across both sites, and with both sites

combined.

Slope Intercept Joint Plateau R2 p-value
Unconstrained relative yield

Princeton – – – – – 0.3770

Quicksand 0.0128 0.83 10.2 0.96 0.02 0.0028

Combined 0.0075 0.88 12.8 0.98 0.02 0.0006

Constrained relative yield (≤1.00)

Princeton 0.0045 0.88 16.5 0.95 0.04 0.0005

Quicksand 0.0124 0.80 10.0 0.92 0.05 <0.0001

Combined 0.0076 0.84 12.7 0.94 0.05 <0.0001

Note: Relative yield was calculated by dividing the yield of the control treatment by the yield of the Phosphorus treatment. Relative yield was either left as calculated

(unconstrained) or constrained at 1.00.

significant for unconstrained (p = 0.0006) and constrained

(p < 0.0001) relative yield, with joints at 12.8 mg kg−1 and

12.7 mg kg−1, respectively, and pseudo-r2 of 0.02 and 0.05,

respectively.

We compared the linear models to determine if the site-

specific models (by site) were more representative of their

sites compared to models of both sites combined (across

sites). Neither the unconstrained (p = 0.3896) or con-

strained (p = 0.3413) combined model was different from the

site-specific models (data not shown).

4 DISCUSSION

Our objective was to evaluate soil test P effectiveness for

variable rate P management within fields and to understand

if soil test critical levels hold at the subfield level. Our results

indicated that within fields, crop response was uncorrelated to

soil test P at M3P below critical concentrations for Kentucky.

While 96% of our plots had soil test P below the 30 mg kg−1

critical nutrient threshold where UKY recommends fertilizer

P (Ritchey & McGrath, 2021), only 51% responded to P

fertilizer (Table 5), with significant prediction of nutrient

response in just two site-years (Princeton in 2020 and

Quicksand in 2016).

At the field scale, the UKY critical level of 30 mg kg−1

effectively identified average P need. We observed average

yield increases in five of seven site-years (Table 3), support-

ing UKY’s recommendation for P fertilizer application when

M3P values are below 30 mg kg−1. However, site-specific

responses varied, with Princeton showing significant yield

response to P in only 1 year (2016), while Quicksand showed

positive yield response in all years. We attributed the lack

of positive response at Princeton to poor crop stands and

adverse growing conditions in 2018 and 2022, where yields

lagged state averages. In contrast, Quicksand provided yields

comparable to state averages throughout the study period

(USDA-NASS, 2024). While only 4% of our main plots had
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REED ET AL. 9 of 12

F I G U R E 6 Linear plateau models for unconstrained and constrained relative yield values by and across sites. Relative yield was calculated by

dividing the yield of the control treatment by the yield of the phosphorus treatment. Relative yield was either left as calculated (unconstrained) or

constrained at 1.0.

T A B L E 5 Summary Statistics of main plot Mehlich 3 extractable phosphorus (M3P) content of both plots that had a response and those that did

not respond to the addition of phosphorus containing fertilizer across both sites and all years.

No response Response

n
Min M3P
(mg kg−1)

Max M3P
(mg kg−1)

Mean M3P
(mg kg−1) n

Min M3P
(mg kg−1)

Max M3P
(mg kg−1)

Mean M3P
(mg kg−1) p-value

Princeton

2016 49 11 50 22 39 10 52 23 0.4290

2018 100 6 42 14 45 6 35 13 0.1740

2020 67 1 23 10 66 1 21 8 0.0045

Quicksand

2016 58 7 36 15 61 6 31 12 0.0038

2018 77 6 33 12 88 6 47 11 0.4130

2020 38 4 26 11 87 3 31 10 0.2469

2021 60 3 20 10 76 3 31 12 0.1410

Combined <0.0001

Note: We determined that a main plot was responsive to P if the yield of the P treatment exceeded the mean yield plus one standard deviation of the unfertilized control

subplots. For main plots where standard deviation was not available due to missing data, we used the standard deviation of the control treatments at that site-year in place

of the individual plot unfertilized standard deviation. Generalized linear model was used to determine if M3P was a predictor of yield response (yes/no). Response was

significant at an α = 0.10.

M3P >30 mg kg−1, with an average RY of 0.96 they created a

definitive plateau. This aligns with the fertilizer recommenda-

tion support tool project, which reported a plateau RY of 92%

at a Mehlich 3 P of 43 mg kg−1 based on 177 corn response

trials across 17 states using a 15 cm soil sample (Buol et al.,

2024). This variable response pattern at the field level has

been documented in other corn and soybean studies (Fulford

& Culman, 2018; Reed et al., 2022).

Linear plateau models revealed important insights about

spatial variability in P response (Figure 6). There were no sig-

nificant differences between site-specific and combined-site

models, with joint points ranging from 10.0 to 16.5 mg kg−1
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(Table 4). The poor pseudo-r2 values (0.02–0.05) indicated

minimal differences in model fits across datasets. While Dodd

and Mallarino (2005) noted different joint points between

sites, our spatially dense dataset specifically examined P

response within fields, revealing limitations in traditional

approaches. Though we focused on linear plateau models,

which provide the basis for UKY recommendations, other

modeling approaches (Slaton et al., 2024) would not alter our

fundamental finding: yield response to P exhibits substantial

spatial and temporal variability that soil test correlation alone

cannot precisely predict.

Our data reveal that conventional experimental designs and

statistical treatment of soil test correlation data, used to make

state-level recommendations (Lyons et al., 2021), mask sub-

field variability that should be accounted for in variable rate

fertilizer management. Notably, our study showed RY val-

ues commonly above 1.0, suggesting negative responses to

P fertilizer. While negative impacts from P fertilizer appli-

cation are presumed rare in the literature, this observation

raises important questions about whether constraining RY

values in models might mask actual spatial variability of nutri-

ent response. As noted previously, the magnitude of positive

response at low soil test P ranges outweighed the negative

responses, so that the mean effect of P application was pos-

itive. Overall, the probability and magnitude of P response

decreased as soil test increased, aligning with the traditional

understanding of soil test correlation.

Traditional variable rate P management assumed that soil

test correlation could be applied at the subfield level with

high-density sampling. However, effective representation of

soil nutrient variability requires prohibitively expensive sam-

pling grids <30 m (Lauzon et al., 2005). Our findings,

supported by recent research (Culman et al., 2023; Reed

et al., 2021, 2022), suggest that even high-density soil P

mapping cannot overcome the inherent variability in subfield

response. Future research should explore incorporating mech-

anistic factors such as soil texture, climate zones, and crop

production history (Beneduzzi et al., 2022; Jordan-Meille

et al., 2012; Peltovuori, 1999; Ramamurthy et al., 2009) or

develop econometric approaches using probabilistic models

to account for stochastic variation and hedge against economic

loss. These strategies could better support precision fertilizer

management while acknowledging inherent response variabil-

ity, potentially improving both economic and environmental

outcomes (Zhang et al., 2024).

5 CONCLUSION

This study demonstrated that soil test P, while effective at

predicting average field-level nutrient responses, lacks the

precision required for sub-field, variable rate fertilizer man-

agement. Although 96% of plots in this study fell below

the critical P threshold recommended for fertilizer appli-

cation, only 51% responded to P inputs, underscoring the

limitations of relying solely on soil test P for precision

agriculture. The inability of soil test P alone to accurately pre-

dict yield response highlights the complexity of P dynamics

within fields and the influence of other contributing factors.

Future precision agriculture models require innovative exper-

imental designs to capture the spatial variability of yield

response to P as a function of additional soil properties,

crop characteristics, and environmental conditions. Our novel

approach of collecting spatially dense yield response data

correlated against soil P concentrations provides a frame-

work for developing more precise fertilizer recommendations

that optimize crop yields while minimizing environmental

impacts.
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